ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD (Department of Mathematics and Statistics)

WARNING

- 1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
- 2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Discrete Mathematics (3406) Level: BS (CS) Semester: Autumn, 2012 Total Marks: 100 Pass Marks: 40

ASSIGNMENT No. 1

(Units 1–4)

Note: Attempt all questions and each question carries equal marks.

Q.1 (a) Use truth table to establish which of the following statements are tautologies and which are contradictions? (10+10)

i.
$$(p \land q) \lor (\sim p \lor (p \land \sim q))$$

ii. $(\sim p \lor q) \lor (p \land \sim q))$

(b) For the table given below;

Р	Q	R	S
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

- i. A Boolean expression having the given table as its truth table.
- ii. A circuit having the given table as its input / output table.
- Q.2 (a) Prove modus tollens. In other words, prove that the following argument form is invalid: (5+5+5+5)

$$p \to q$$
$$\sim p$$
$$\therefore \sim q$$

- (b) Write negation of the statement: \forall animals x; if x is a cat then x has whiskers and x has claws.
- (d) Indicate whether the following arguments are valid or invalid? Support your answer by drawing diagrams.
 All people are mice.
 All mice are mortal.
 ∴ All people are mortal.
- Q.3 (a) Use symbols to write the logical form of the following arguments then use a truth table to test the arguments for validity; (5+5+10)
 If Tom is not on team A, then Hua is on team B.
 If Hua is not on team B, then Tom is on team A.
 ∴ Tom is not on team A or Hua is not on team B.
 - (b) What can you conclude about the validity OR invalidity of the following argument form?

$$\forall x, if P(x) then Q(x); \\ \sim P(a) For a particular \alpha \\ \therefore \sim Q(a)$$

- Q.4 (a) Prove that for all positive integers a and b, $a \mid b$ if, and only if, gcd (a, b) = a. (5+5+10)
 - (b) For all integers a, b and c, if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.
 - (c) Use the well-ordering principal to prove that if a and b are any integers not both zero then there exist integers u and v such that gcd(u, v) = ua + vb.
- Q.5 (a) Write an algorithm to determine whether a given element x belongs to a given set, which is represented as an array $a[1], a[2], a[3], \dots, a[n]$. (10+10)
 - (b) Write a negation for the following statements;
 - i. \forall Sets *S*, \exists *a* set *T* such that $S \cap T = \emptyset$. Which is the true statement or its negation? Explain.
 - ii. $\exists a \text{ Set } S \text{ such that } \forall \text{ sets } T, S \cup T = \emptyset$. Which is the true statement or its negation? Explain.

ASSIGNMENT No. 2

(Units 5–9)

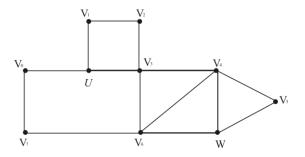
Total Marks: 100

Pass Marks: 40

Note: Attempt all questions and each question carries equal marks.

- Q.1 (a) Suppose that there are three roads from city A to city B and five roads from city B to city C; (10+10)
 - i. How many ways is it possible to travel from city A to city C via city B?
 - ii. How many different round trip routes are there from city A to B to C to B and back to A in which no road is traversed twice?
 - (b) A computer programming team has 14 members.
 - i. Suppose two team members refuse to work together on project. How many groups of 7 can be chosen to work on a project?
 - ii. How many ways can a group of 7 are chosen to work on a project?
 - iii. Suppose 8 team members are women and 6 are men; how many groups of 7 can be chosen that contain 4 women and 3 men?
- Q.2 (a) Draw arrow diagrams for the Boolean functions defined by the following input / output table; (10+10)

Input		Output
Р	Q	R
1	1	0
1	0	1
0	1	0
0	0	1


- (b) Given any set of seven integers;
 - i. Must there be two that have the same remainder when divided by 6? Why?
 - ii. Must there be two that have the same remainder when divided by 8? Why?
- Q.3 (a) A single pair of rabbits (Male & Female) is born at the beginning of a year. Assume the following conditions; (10+10)
 - i) Rabbit pairs are not fertile during their first two months of life, but there after gave birth to three new male/female pairs at the end of every month;
 - ii) No deaths occur during the year.

- 1. Let S_n the number of pairs of rabbits live at the end of month n, for each integer $n \ge 1$, and let $S_0 = 1$. Find a recurrence relation for $S_0, S_1, S_2,...$
- 2. Compute S_0 , S_1 , S_2 and S_4
- 3. How many rabbits will be there at the end of the year?
- (b) A runner targets herself to improve her time on a certain course by 3 seconds a day. If on day 0 she runs the course in 3 minutes, how fast must she run it on the 14th day to stay on target?
- Q.4 (a) Show that for any real number x, if x > 1 then $|2x^2 + 15x + 4| \le 21 |x^2|$ and use O- notation to express the result? (10+10)
 - (b) Refer to the following algorithm segment. For each positive integer n, let b_n be the number of integrations of the while loop;

While (n > 0)n := n div 3End while

Trace the action of the algorithm segment on n when the initial value of n is 424.

- Q.5 (a) Draw all non-isomorphic graphs with four vertices and no more than two edges. (5+5+10)
 - (b) Prove that if a walk in a graph contains a repeated edge, then the walk contains a repeated vertex.
 - (c) For the following graph determine whether there is an Euler path from U *to w*. If there is, find such a path:

